Ch 18: Thermal Properties of Matter

States of Matter:

Thermodynamic characteristics of a substance

Physical mass volume energy entropy

Compound
pressure
temperature
density
specific heat

Ch 18: Thermal Properties of Matter

Phase and State Relationships

What is the relationship?

Thermodynamic state variables determine the phase of the system and the particle.

Ch 18: Thermal Properties of Matter

Units for thermodynamic states

Corresponding extensive and intensive thermodynamic properties

Extensive property	Symbol	SI units	Intensive property**	Symbol	SI units
Volume	V	m ³ or L*	Specific volume***	v	m ³ /kg or L*/kg
Internal energy	U	J	Specific internal energy	u	J/kg
Entropy	S	J/K	Specific entropy	s	J/(kg·K)
Enthalpy	н	J	Specific enthalpy	h	J/kg
Gibbs free energy	G	J	Specific Gibbs free energy	g	J/kg
Heat capacity at constant volume	Cv	J/K	Specific heat capacity at constant volume	c _v	J/(kg·K)
Heat capacity at constant pressure	C _P	J/K	Specific heat capacity at constant pressure	CP	J/(kg·K)

^{*} L = liter, J = joule

Formulas

Q=mC\DT

J,kg,K

pV=nRT J,mol,K

U=Q-W

^{**} specific properties, expressed on a per mass basis

^{***} Specific volume is the reciprocal of density.

Ch 18: Thermal Properties of Matter

Ideal Gases

- Very low force of attraction between particles
- High Temperatures
- Low Pressures

Ideal Gas Equation:

$$pV=nRT$$
 $R=8.314$ J/mol·K

What relationship is described by the equation?

Ch 18: Thermal Properties of Matter

Kinetic Molecular Model:

The *Temperature* of an ideal is gas related to its *Kinetic Energy*

Entire System Single Molecule

$$K_{tr} = \frac{3}{2} nRT$$
 $\frac{1}{2} m(v^2)_{av} = \frac{3}{2} kT$

Temperature, Heat, & Kinetic Energy are interdependent!

Ch 18: Thermal Properties of Matter

Molecular Speeds

$$f(v) = 4\pi (^{m}/_{2\pi kT})^{3/2} v^{2} e^{-v2m/2kT}$$

 $\int_{0}^{\infty} f(v) dv = 1$

If we account for all velocities, we should expect to account for all particles

http://www.tannerm.com/images/maxboltz2.gi

$$(v^2)_{av} = (v^2)_x + (v^2)_y + (v^2)_z$$

 $^1/_3(v^2)_{av} =$

Explains phase temperature relationship

Ch 18: Thermal Properties of Matter

Heat Capacities

Determined by the degrees of freedom Demonstrates the kinetic molecular model

$$k = {}^{\rm R}/{}^{\rm N}_{\rm A} = 8.314 \; {\rm J/mol\cdot K} \div 6.022 \; {\rm x} \; 10^{23} \; {\rm molecules/mol} \; k = 1.381 \; {\rm x} \; 10^{-23} \; {\rm J/molecule\cdot K}$$

Ch 18: Thermal Properties of Matter

Summary

- **★**State variable
- **★**State vs Phase
- **★**Ideal Gas Equation
- **★**Kinetic Molecular Model
- **★**Molecular Speeds
- **★**Heat Capacities

Ch 18: Thermal Properties of Matter

Citation

Young, Hugh D., and Roger A. Freedman. University Physics with Modern Physics. 13th ed. Harlow: Addison-Wesley, 2011. Print.

"Intensive and Extensive Properties." Wikipedia. Wikimedia Foundation, 29 Aug. 2014. Web. 01 Sept. 2014.